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Abstract

Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimat-

ing spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species

of Australian plants with contrasting demographic traits, we show that: (i) predicted climate-driven changes in range

area are sensitive to the underlying habitat model, regardless of whether demographic traits and their interaction

with habitat patch configuration are modeled explicitly; and (ii) caution should be exercised when using predicted

changes in total habitat suitability or geographic extent to infer extinction risk, because the relationship between these

metrics is often weak. Measures of extinction risk, which quantify threats to population persistence, are particularly

sensitive to life-history traits, such as recruitment response to fire, which explained approximately 60% of the devi-

ance in expected minimum abundance. Dispersal dynamics and habitat patch structure have the strongest influence

on the amount of movement of the trailing and leading edge of the range margin, explaining roughly 40% of modeled

structural deviance. These results underscore the need to consider direct measures of extinction risk (population

declines and other measures of stochastic viability), as well as measures of change in habitat area, when assessing

climate change impacts on biodiversity. Furthermore, direct estimation of extinction risk incorporates important

demographic and ecosystem processes, which potentially influence species’ vulnerability to extinction due to climate

change.
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Introduction

The influence of climate change on species’ ranges,

phenology and physiology has already been widely

documented (Parmesan, 2006; Rosenzweig et al., 2008).

However, predictions of future extinction risk based

on observed effects of climate change at the species

level have proven more difficult (Akçakaya et al.,

2006; Pereira et al., 2010). This is partly because most

current methods for evaluating the effects of climate

change on biodiversity, such as correlative species dis-

tribution models (SDM), only consider climate-driven

changes in geographical range area or the quality and

quantity of suitable habitat (Thomas et al., 2004; Ara-

ujo et al., 2006). Recent research has attempted to

incorporate the mechanisms and interactions that
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drive species distributions and abundance more

explicitly (Keith et al., 2008; Anderson et al., 2009;

Buckley, 2010; Kearney et al., 2010; Lawson et al.,

2010; Fordham et al., 2012). However, it is not known

how sensitive measures of change in range area and

population abundance are to these modeling details,

or how well these proxy risk metrics are correlated

with more direct estimates of extinction probability

(i.e., assessments of the likelihood of population

decline).

Species’ ranges are commonly modeled using statisti-

cal associations that link species’ occupancy or abun-

dance records to spatial environmental variables,

implicitly capturing processes that limit the distribution

of the species (Elith & Leathwick, 2009). The resulting

correlative SDMs (also termed bioclimatic envelope,

habitat or ecological niche models) can then be pro-

jected onto landscapes to identify geographic regions

with potentially suitable environmental conditions.

Correlative SDMs are commonly used to draw infer-

ences about future extinction risk of species and suit-

ability of their habitats because they allow exploration

of potential future changes in geographic range areas

and habitat quality in response to human related dis-

turbances, such as climate change. However, the use of

correlative SDMs to predict responses to climate change

operates under the assumptions that: (i) observed spe-

cies distributions are in equilibrium with the climate

and habitat factors constraining those distributions; (ii)

current climatic and geographic constraints that define

a species distribution reflect its biophysical limits; and

(iii) a model fitted to current data will project sensibly

to new environmental conditions (Franklin, 2010; Peter-

son et al., 2011).

Whilst correlative SDMs reflect outcomes of ecologi-

cal processes that affect species, they can only do so

implicitly through the spatial patterning of species

records. In some instances, species demographic traits

may account for a high level of variability in model per-

formance. For example, Dobrowski et al. (2011) found

that SDMs of plant species with greater dispersal capac-

ities, intermediate levels of prevalence and a weak

reproductive response to fire had better future and his-

torical predictive ability than models of plants with lim-

ited dispersal capacity that rely on fire for

reproduction. Other lines of evidence, based on more

mechanistic approaches, also suggest that species traits

are important for understanding the dynamics of spe-

cies ranges in changing environments (Best et al., 2007;

Buckley, 2010). Mechanistic approaches that account

for demographic processes that drive species’ distribu-

tion and abundance better approximate observed spa-

tial patterns of abundance and geographic range size

(Cabral & Schurr, 2010).

Efforts to adopt more process-based approaches have

led to some apparently paradoxical (but important)

outcomes that were not detected by correlative

approaches alone. For example, spatially structured

metapopulation models of South African fynbos plants

forecast rapid declines and range contractions in some

currently widespread species under future climate

change, while other species that are currently restricted

were predicted to stay relatively stable, or even expand

their distributions (Keith et al., 2008). Although mecha-

nistic techniques, such as linking correlative SDM fore-

casts to structured spatial population models, may be

more realistic on a priori grounds (Brook et al., 2009),

whether predictive accuracy is actually enhanced will

depend on how well the demographic (or physiologi-

cal) component of the model captures the ecology of

the species. Thus, correlative SDMs, which are much

simpler to parameterize and computationally less

intensive than coupled approaches, might be better sui-

ted to some circumstances. Model evaluations using

well-studied organisms are therefore required to test

the predictive ability of correlative SDM-only

approaches, and compare model performance with

coupled SDM-population models (coupled niche-popula-

tion models).

The IUCN Red List (IUCN, 2010b) is the most widely

used global threatened species list, using quantitative

criteria based on estimates of habitat change, as well as

more direct measures of extinction risk (Rodrigues et al.,

2006). Difficulties in applying the criteria to species

affected by global climate change have resulted in sev-

eral misapplications of the criteria (Akçakaya et al.,

2006). Extinction risk is often inferred from measures of

change in range area (IUCN, 2010b), even though theory

suggests it is unlikely that species’ abundance will

decline at the same rate as its distribution (Lawton, 1993;

Gaston et al., 2000). With the prospect of listing species

that face imminent and significant range changes, and

recognizing inherent difficulties of inferring extinction

risk from predicted range change, the IUCN has recently

recommended techniques be developed to better

approximate threats to species’ persistence from pre-

dicted range changes, with particular emphasis on the

use of SDMs (IUCN, 2010a). One of the goals of the

research presented here is to begin to examine how out-

puts from correlative SDMs can more reliably be used to

assess taxa against the Red List criteria, using some

well-studied case examples of plants fromAustralia.

To assess whether projected changes in extinction sus-

ceptibility are affected by explicitly considering species’

population dynamics, we compare predictions of fore-

cast changes in species range area and range margin

movement derived from habitat models with and with-

out coupled population models. We consider two types
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of risk metrics: (i) indirect inferences of extinction prone-

ness that can be estimated from correlative SDMs alone,

i.e., measures of change in range area are used to infer

extinction likelihood (Thomas et al., 2004) and (ii) direct

measures of extinction risk, which can only be estimated

when stochastic-demographic models are part of the

estimation method, i.e., expected minimum abundance

(McCarthy & Thompson, 2001). We use five species to

test the relative influence that the type of habitat suitabil-

ity model, the climate change scenario and the various

demographic factors have on inferred and measured

extinction risk. By comparing projected habitat suitabil-

ity, range area, and population abundance across species

and climate scenarios, we examine whether demo-

graphic traits, either alone or in combination with habi-

tat configuration, dictate whether range area estimates

provide a reasonable approximation of abundance.

A second goal of this study is to address the issue of

consistency in predictions of climate impacts on biodi-

versity. To date, debate has focused primarily on com-

paring the usefulness of different SDM techniques (e.g.,

Morin & Thuiller, 2009; Buckley, 2010; Kearney et al.,

2010). Here, we compare the suitability of using surro-

gates of extinction risk over targeted (and more difficult

to estimate) measures of population viability, and the

comparative value of range area estimates obtained

from simple correlative approaches vs more ecologi-

cally-based approaches that explicitly account for

demographic processes and habitat spatial structure.

Methods

Case study species

We identified appropriate plant species for this analysis, based

on the following criteria: (i) the availability of representative

point location data; (ii) an established understanding of the

climatic and environmental conditions that define each species

distribution; and (iii) strong knowledge of species’ population

dynamics (i.e., survival, recruitment and dispersal rates and

how they respond to environmental variability and density

feedbacks). Five Australian native plants, with contrasting life

histories, were selected: Angophora hispida, Banksia baxteri,

Hakea constablei, Senecio macrocarpus and Xanthorrhoea resinosa.

Location data

Occurrence records were extracted from surveys undertaken

by Australian State Government agencies (Department of

Environment and Natural Resources [http://www.environ-

ment.sa.gov.au/]; Office of Environment and Heritage

[http://www.environment.nsw.gov.au/]; and Department of

Sustainability and Environment [http://www.dse.vic.gov.au/

dse/index.htm]). Banksia records came from the Banksia Atlas

(see Yates et al., 2010 for further details). All records were

scrutinized and any questionable points (in particular,

those lying outside the present day distribution, as perceived

by expert opinion) were removed. The number of unique

occurrence records for each species was: A. hispida = 254; B.

baxteri = 175; H. constablei = 109; S. macrocarpus = 95; and X.

resinosa = 1140.

Climate and environmental spatial data

We identified four climate variables as being most relevant to

plant survival and recruitment in southern Australia. These

were: (i) maximum temperature in the warmest month; (ii)

minimum temperature in the coolest month; (iii) summer rain-

fall; and (iv) winter rainfall. Meteorological weather station

data was sourced for Australia from the Queensland Govern-

ment SILO patched point database (http://www.longpad

dock.qld.gov.au/silo/), which provides a comprehensive

archive of Australian rainfall and temperature data. The

archive is constructed from ground-based observational data,

whereby continuous and complete daily time step records have

been constructed using spatial interpolation algorithms to esti-

mate missing data (Jeffrey et al., 2001). Monthly daily tempera-

ture records [number of stations (ns) = 735] were averaged and

rainfall (ns = 3060) measurements summed for the 20-year

baseline period 1980–1999. Monthly values were averaged

across years and across seasons (where applicable), producing

mean estimates centred on 1990. The weather-station data were

smoothed spatially using thin-plate-smoothing spline-fitting

techniques (Hutchinson, 1995) in ANUSPLIN v4.36 (http://

fennerschool.anu.edu.au/publications/software/anusplin.php),

producing high resolution gridded climate surfaces (0.01°
9 0.01° latitude/longitude; see Fordham et al., 2012).

We generated an annual time series of climate-change lay-

ers for each variable according to two emission scenarios: a

high CO2 concentration stabilising reference scenario

(WRE750) and a more conservative scenario that assumes sub-

stantive intervention (LEV1) (Wigley et al., 1996, 2009). The

procedure comprised two main parts (for further details see

Fordham et al., 2011a,b):

1 MAGICC/SCENGEN 5.3 (http://www.cgd.ucar.edu/cas/

wigley/magicc), a coupled gas-cycle/aerosol/climate model,

used for sensitivity analysis in the IPCC Fourth Assessment

Report (IPCC, 2007), was employed to generate an annual

time series of future climate anomalies (2000–2100) using an

ensemble of nine GCMs, chosen on the basis of their skill in

reproducing the Australian baseline climate (1980–1999),

specifically: annual, winter and summer precipitation and

temperature. The advantages of generating climate-model

averaged ensemble forecasts have been recently reviewed

(Fordham et al., 2011a). Models were chosen using a num-

ber of comparison (or validation) metrics: (i) model bias (i.

e., the difference between model and observed spatial

means averaged over a user-specified area); (ii) pattern cor-

relation; and (iii) standard and centred root-mean-square

errors. Rather than using actual values of these various sta-

tistics, we placed them on a level playing field by using only

model ranks for each statistic. Our key overall comparison

metric is the cumulative rank (Fordham et al., 2011a).
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MAGGICC/SCENGEN also allows for an outlier analysis to

be computed which compares future projections based on

individual models with the average projection of all other

models (Fordham et al., 2011b). The nine GCMs used were

GFDL-CM2.1, MIROC3.2(hires), ECHAM5/MPI-OM,

CCSM3, ECHO-G, MRI-CGCM2.3.2, UKMO-HadCM3,

GFDL-CM2.1, MIROC3.2(medres), where model terminol-

ogy follows that used in the CMIP3 model data base

(http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php).

Although different skill ranking approaches might result in

a different candidate set of skilful models, if the ensemble

average is based on more than five GCMs, model choice has

a reduced effect on the average forecast (Pierce et al., 2009).

2 These climate anomalies were downscaled to an ecologi-

cally relevant spatial scale (0.01 9 0.01° longitude/latitude),
using the ‘change factor’ empirical method, where the low-

resolution change from a GCM is added to a high-resolution

baseline observed climatology (Hulme et al., 1995). Bi-linear

interpolation of the GCM data (2.5 9 2.5°) to a finer resolu-

tion of 0.5 9 0.5° longitude/latitude was used to reduce

discontinuities in the perturbed climate at the GCM grid

box boundaries (Fordham et al., 2011a, 2012). One advan-

tage of this method is that, by using only GCM change data,

it avoids possible errors due to biases in the GCMs baseline

(present-day) climate.

Geological substrate has a large impact on plant distribu-

tions and persistence (Keith, 2011). We collapsed category

classes in the Surface Geology of Australia dataset (1 : 1 mil-

lion scale; Raymond & Retter, 2010) to generate binary suit-

able/not suitable maps on a per species basis. Because land

clearing has exerted a strong historical effect on the distribu-

tion of many Australian species, we needed to mask predicted

distributions to extant vegetation. We obtained the most

recent Australia-wide gridded information on extant vegeta-

tion (NVIS data; http://www.environment.gov.au/erin/

nvis/index.html) and updated it with newer data from New

South Wales (Keith & Simpson, 2008). Post-prediction masks

are available from the authors on request.

Species distribution modeling

We modeled the bioclimatic envelopes of all five species

using an automated ensemble forecasting approach using a

range of different techniques and a single forecasting tech-

nique implemented in consultation with experts on the spe-

cies modeled.

The Bio-ensembles software (Diniz-Filho et al., 2009) was

used to generate climate envelopes using a large number of

forecasts obtained from generating models with ten-fold

cross-validated samples calibrated with 70% random subset of

the data, six alternative combinations of variables (i.e., the full

factorial combination of the four selected climatic variables),

and seven bioclimatic-niche models (BIOCLIM, Mahalanobis

and Euclidean distances, Generalized Linear Models, Random

Forest, Maximum Entropy, and GARP). Models were cali-

brated using default options in Bio-ensembles (Diniz-Filho

et al., 2009). For models requiring records of absence as well

as presence, pseudo-absences were chosen randomly from

locations with low climatic suitability (Wisz & Guisan, 2009),

i.e., outside the observed 90th percentile for each climate vari-

able. The number of pseudo-absences matched the number of

presences. A habitat-suitability threshold was computed by

extracting present-day Bio-ensemble suitability values for all

presence location points and calculating the 5% quantile.

As an alternative, we used MaxEnt (Phillips et al., 2006),

with variable selection, iterative model fitting and evaluation

undertaken in consultation with species experts (as opposed

to using an automated full factorial combination of variables –

the Bio-ensembles approach). MaxEnt adjusts choice of feature

type and settings for complexity in relation to sample size.

Software defaults were used except that threshold features

were excluded (these tended to lead to overly complex fits).

All presence records were used to fit the models. Background

environments for MaxEnt models were constrained for four

species, by taking background samples within biogeographic

regions (IBRA v6.1; http://www.environment.gov.au/parks/

nrs/science/bioregion-framework/ibra/) occupied by the

species or neighboring these (Elith et al., 2011 describe

the rational for constraining background points). In contrast,

the background environment for B. baxterii consisted of sites

sampled for all banksias for a subregion of Western Australia,

following Yates et al. (2010). The model results were assessed

by experts for realism of the modeled relationships and the

predicted current distributions. Thresholds of occurrence (Liu

et al., 2005) were based on quantiles of the occurrence records

included in the final prediction; we explored 2.5%, 5% and

10% quantiles and found 5% gave results judged sensible by

experts for all species.

Substrate is important in delimiting distributions of all

these species, so we either: (i) ran climate-only models

(‘Bio-ensembles’ and ‘MaxEnt without substrate’) and used

substrate as a post-prediction mask (i.e., points on unsuitable

substrates were assigned a habitat suitability value of zero); or

(ii) included substrate as a predictor in the model (on the

understanding that substrate and climate are together influ-

encing the species’ distribution in a potentially interactive

way; the ‘MaxEnt with substrate’ model) and as a post-prediction

mask. The geological mask was only used explicitly in the

modeling process with MaxEnt because categorical variables

cannot be handled by some of the models incorporated in the

ensemble. In one region, substrate was highly correlated with

summer rainfall, so for the species occupying that region (H.

constablei) we dropped summer rainfall as a candidate variable

for the climate plus substrate model on the understanding that

the species is substrate-limited.

Overall, three correlative SDM runs (i.e., Bio-ensembles;

MaxEnt with substrate; and MaxEnt without substrate) were

used to forecast climate suitability in annual time steps (2000–

2100) according to two emission scenarios (LEV1 and

WRE750; see above).

Metapopulation modeling

We constructed spatially explicit stage-based stochastic matrix

models for each species in RAMAS GIS v5 (Akçakaya & Root,

2005). All five of the case study species are hermaphroditic and

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 1357–1371
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were modeled as females in RAMAS. A detailed description of

the metapopulation models (including the stage structure of

each cohort matrix population model) is provided in Appen-

dix S1.

To determine the spatial structure of the metapopulation,

we used an environmental-suitability layer consisting of the

correlative SDM output, masked to exclude unsuitable sub-

strates and areas cleared of native vegetation. Specifically, the

distribution of suitable patches in each year (i.e., location, size,

and shape) was determined based on a minimum habitat suit-

ability threshold and a neighborhood distance (the spatial dis-

tance at which the species can be assumed to be panmictic).

Suitable habitat was defined by the minimum threshold value

obtained with correlative SDMs, representing the 10th percen-

tile of non-zero habitat suitability values (see Appendix S1),

for each cell in the modeled landscape. RAMAS GIS defined

each patch in each annual correlative SDM for each species as

a cluster of nearby grid cells with suitable habitat, and is

assumed to support one population. Adjacent populations

were delineated by a neighborhood distance threshold set to

1.5–2.0 km. The grid-cell clustering algorithm is described in

Akçakaya & Root (2005).

Population models incorporated demographic and environ-

mental variability, density dependence and dispersal.

RAMAS GIS implements demographic stochasticity by sam-

pling the number of survivors from binomial distributions,

and the number of seeds produced from a Poisson distribu-

tion (Akçakaya & Root, 2005). Environmental stochasticity

was sampled from lognormal distributions with coefficients

of variation set to 10% for survival and growth transitions,

and 20% for fecundity and germination transitions. To reduce

likely truncations due to high survival rates, a negative corre-

lation was imposed between the largest survival rate and

other survival rates for each stage (Akçakaya & Root, 2005).

Environmental variability was set to be correlated between

populations depending on their spatial separation. Pairwise

correlations were calculated using an exponential function,

P = a.exp(Dc/b), where D is the distance between centroids of

habitat patches and a, b and c are constants. We used regio-

nal variation in year-to-year annual rainfall to approximate

environmental correlation for all species, other than X. resin-

osa, where winter rainfall was used. Similarly, Keith et al.

(2008) used annual rainfall to approximate environmental

spatial variability, because of it is role in governing rates of

seedling establishment.

Density-dependence was implemented using a stage-struc-

tured model in which vital rates of the population were

reduced whenever the density of the population exceeded a

ceiling threshold (Keith et al., 2008). Ceiling thresholds for

each species were based on the mean area occupied by the

canopy of a plant in the largest stage when unaffected by

neighbors (i.e., maximum canopy size). Initially, the area of

each habitat patch was divided by the maximum canopy size.

This value was discounted by the mean proportion of mapped

suitable habitat occupied by other plants species and unsuit-

able microhabitats to give the number of individuals in the

largest-stage that could grow in the patch unconstrained by

neighbors (i.e., the ceiling threshold). During simulations, the

space used by the population in each patch was calculated by

summing the number of individuals in each stage, multiplying

these numbers by a stage-specific weight, and summing across

all stages. Stage-specific weights were estimated from relative

mean canopy areas of plants in each stage. For each time step,

where the space used exceeded the ceiling threshold, rates of

survival, growth and fecundity were reduced by a user-

defined amount (see Appendix S1). This user-defined reduc-

tion increases linearly as the space used increases above the

threshold. Seeds were excluded since they are not subject to

density-dependent processes.

We modeled wildfires explicitly as catastrophes (similar to

Keith et al., 2008), with a mean fire return interval over

100 years of approximately 12 years, affecting vital rates (sur-

vival and fecundity) and density-dependent feedback pro-

cesses in different ways depending on the species (see

Appendix S1). For simplicity, we assume that fire frequency

remains constant over the duration of the simulation. How-

ever, wildfires are expected to increase in frequency in

response to climate change, though the severity of the shift

remains uncertain (Williams et al., 2009).

The probability of seed dispersal between patches of suit-

able habitat during each time step was modeled with an expo-

nential function, P = a.exp(Dc/b), where D is the distance

between patch centroids and a, b an c are constants. When D

exceeds a specified maximum distance (Dmax), P is set to zero.

The parameters of the baseline dispersal model (suitable for B.

baxteri, H. constablei and X. resinosa) were adjusted to produce

a shorter dispersal kernel for the passively dispersed A. hispida

and a longer dispersal kernel for the light-weight wind-dis-

persed S. macrocarpus (see Appendix S1).

Initial abundance in the first time step (t) was firstly mod-

eled as being equal to carrying capacity (i.e., the ceiling thresh-

old). A period of 50–100 years (1000 permutations),

depending on the life history of the plant, was then used to

generate a stable age distribution and equilibrium initial patch

abundance under the assumption of no future climate change.

The initial abundance of patches located outside of suitable

bioregions (as defined by the taxon-specific experts), which

define present-day distribution (see above), were set to zero.

Thus, these patches equate to areas that are climatically suit-

able, but not colonized, in the year 2000. Treating initial abun-

dance as zero allows these areas of the range to be colonized

in the future through demographic processes (such as dis-

persal) interacting with changes in habitat suitability.

Simulations

Patch structure was predicted for each species for each year

between 2000 and 2100, using climate estimates from the

future climate scenarios (WRE750 and LEV1, described above)

and the selected species modeling methods. In these scenarios,

species’ spatial abundance patterns and range limits were dri-

ven by demographic processes, wildfires, climate change and

the interaction between these. The stable climate scenario was

modeled by keeping the climate envelope map for 2000 static

throughout the simulation. Thus, under this scenario, only

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 1357–1371
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demographic processes could cause changes in species distri-

bution and abundance. All simulations were based on 10 000

stochastic replicates and run over a 101 year period (i.e., 2000–

2100).

Proportional changes in a population viability metric, range

margin movement and occupied range area were compared

between 2020 and 2100, allowing sufficient time for the popu-

lation to stabilise. More specifically:

1 Population viability was assessed using expected minimum

abundance (EMA; McCarthy & Thompson, 2001) in 2100, a

continuous metric reflecting risks of both declines and

extinction risk.

2 Range movement between 2020 and 2100 was calculated

based on a weighted mean of the latitudes of the most

northern/southern 10% of the metapopulation. Weights

were the average population abundance of each patch in

each year, and latitude was taken from the geographic cen-

ter of the patch (Anderson et al., 2009).

3 Changes in occupied range area (ORA) between 2020 and 2100

were investigated using the difference between the number of

sites (~1 9 1 km latitude/longitude cells) gained by the spe-

cies (i.e., sites where the specieswas present in 2100 but absent

in 2020) and the number of sites lost (i.e., sites where the spe-

cies was absent in 2100 but present in 2020) relative to the total

number of sites occupied in 2100 (based on Buisson et al.,

2010). A density threshold value of one adult/km2 was

applied to spatial density maps. Thus, grid cells of very low

adult abundancewithin a patchwere consideredunoccupied.

To compare estimates of suitability (and in turn occurrence)

based on correlative SDMs with estimates from coupled

Table 1 Extinction risk metrics for five Australian plants according to different modeling approaches: (i) species distribution mod-

els only (SDM; range) and (ii) a coupled niche-population model (Niche-Pop Model; Range, EMA and North)

> 20%
–20 to 20%
< –20%

Difference between the area of habitat gained and lost relative to predicted habitat area in 2020 according to species distribution

models (SDM; Range) and differences in occupied area according to coupled niche-population models (Niche-Pop Model; Range).

Also shown is the expected minimum adult abundance in 2100 relative to mean abundance in 2020 (EMA), and movement of the

most northern 10th percentile of the metapopulation between 2020 and 2100 relative to the distance between the range margin and

weighted population centroid in 2020 (Margin). Metrics are presented for three SDM approaches [Bio-ensembles, MaxEnt, MaxEnt

(with substrate)] and two climate change scenarios: a high CO2 concentration stabilising scenario (WRE750) and a heavy mitigation

scenario, assuming substantive policy intervention (LEV1). See Methods for details.
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niche-population models (i.e., correlative SDMs coupled with

population models), changes in range area were similarly cal-

culated for correlative SDM outputs. In this case, a habitat-

suitability threshold, specific for each species and correlative

SDM (see above), was used to distinguish between potentially

occupied and unoccupied sites.

Detecting trends

General linear mixed-effects models (GLMM; Gaussian-iden-

tity distribution-link) were used to identify key determinants

of expected minimum abundance (n = 45) and northern range

margin movement (n = 45). Using monotonic or quadratic

relations to normalize expected minimum abundance proved

unsuccessful: a quantile-based approach was used to achieve

normality (Jongman et al., 1987). Likelihood ratio tests for

mixed-effects models (Crainiceanu & Ruppert 2004) confirmed

that plant species (species) should be treated as a random

effect. Thus, models were not simplified to general least

squares models (Pinheiro & Bates, 2000). Model fixed effects

were: future climate scenario (scenario), modeling technique

(i.e., uncoupled SDM or coupled niche-population model; cou-

pling) and SDM approach (approach); area of suitable habitat in

2020 (range), the ratio between predicted number of patches

and range size in 2020 (patch.structure).

We used general linear models (GLM; Gaussian-identity

distribution-link) to explore the relative importance of differ-

ent species specific traits on expected minimum abundance

and northern range margin movement. These species traits

were: maximum rate of population growth (rmax; low, med-

ium or high); average dispersal distance for one in every 1000

individuals (disp); and recruitment response to fire (strong or

weak).

We also investigated potential drivers of occupied range

area (n = 60) in 2100 using GLMs (the response variable was

scaled between 0 and 1 for each species). GLMs were used

because likelihood ratio tests indicated a lack of support for

treating species as a random factor. In each case, model residu-

als were inspected to confirm normality (Crawley, 2002). All

GLMMs were fitted using the lmer function of the lme4 pack-

age in the R statistical package (v. 2.12.1; R Development Core

Team 2010).

Results

Range Area: There was broad agreement in change in

range area forecast for 2020 to 2100, regardless of

whether the metric was predicted using uncoupled cor-

relative SDMs or coupled niche-population model

(Table 1) – the former being based on habitat suitability

above a SDM/species specific threshold, the latter on

estimates of occupied range area. However, the choice

of underlying habitat model (SDM approach) largely

influenced the extent and, in some instances, the direc-

tion (Table 1) of change in occupied range area between

2020 and 2100 (e.g., Figs 1 and 2). Consistent with pre-

vious studies, the GLM analysis indicated that SDMs

(approach) contributed more variability in estimates of

change in range area than did either climate change

scenario, and here we found this was true also when

Fig. 1 Impact of species distribution modeling approach [Bioen-

sembles; MaxEnt; MaxEnt (with substrate)] on the area and loca-

tion of suitable habitat or occupied habitat maintained (orange),

lost (yellow) and gained (red) between 2020 and 2100 for the

Australian shrub Angophora hispida according to uncoupled spe-

cies distribution models (a–b) and coupled niche-population

models (d–f). The climate is assumed to follow a high CO2 con-

centration stabilising scenario (WRE750). Congruence between

coupled and uncoupled modeling approaches for forecast occur-

rence (green) of A.hispida in 2100 is mapped (g–i). Suitable areas

according to only the uncoupled distribution modeling

approach are also mapped (brown). There were very few cells

suitable according to only the coupled niche-population model.
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correlative SDMs were coupled to population models

(coupling) (Table 2; Appendix S2). Although AIC sup-

port for the two top-ranked models was nearly equal

(approach + coupling; wi = 0.38); (approach; wi = 0.31;

DAICc = 0.38), the majority of deviance in estimated

range area was explained by the single parameter

approach-only model (~56% vs 66%).

Accordingly, the area and spatial pattern of suitable

habitat (according to uncoupled models) and occupied

habitat (according to coupled models) were quite

similar for a given correlative SDM run (Fig. 1, com-

parison within columns). However, for some species

and correlative SDM approach, differences in forecast

suitability and occupied habitat were apparent (e.g.,

Fig. 2, see areas mapped brown in bottom row). In

some instances, the explicit inclusion of substrate in

the habitat sub-model resulted in more constrained

range area projections. For example, the disjunction

in the distribution of X. resinosa on the south coast

was only captured by the MaxEnt approach that

included geological substrate in the model (Fig. 2,

right column).

Expected Minimum Abundance: Trends in expected

minimum abundance (a direct measure of extinction

risk) were not consistent with area-type surrogates of

extinction threat (Table 1). The contrast was most nota-

ble for the LEV1 emission scenario, which assumes sub-

stantive human intervention to reduce climate change,

and presumably a slower rate of change in habitat suit-

ability. In contrast to estimated range area, there was

Fig. 2 Impact of species distribution modeling approach [Bioensembles; MaxEnt; MaxEnt (with substrate)] on the area and location of

suitable habitat maintained (orange), lost (yellow) and gained (red) between 2020 and 2100 for the Australian grasstree Xanthorrhoea res-

inosa according to uncoupled species distribution models (a–b) and coupled niche-population models (d–f). The climate is assumed to

followa high CO2 concentration stabilising scenario (WRE750). Congruence between coupled and uncoupled modeling approaches for

forecast occurrence (green) of X. resinosa in 2100 is mapped (g–i). Suitable areas according to only the uncoupled distribution modeling

approach are also mapped (brown). There were few cells suitable according to only the coupled niche-population model.
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no support for the hypothesis that the explanatory vari-

able approach (type of correlative SDM) has a strong

influence on expected minimum abundance (Table 3,

Appendix S3). Rather, the ratio between predicted

number of patches and range size in 2020 was the best

predictor of expected minimum abundance (patch.range

+ [1|species]; wi = 0.91). However, a large proportion of

the observed deviance (69% vs 72%) was explained by

the second-ranked model, which included only the tax-

onomic random effect (1 + [1|species]; wi = 0.02;

DAICc = 7.96).

Adopting a simplified GLM framework, and substi-

tuting the random effect with key population traits,

showed a greater level of support for fire-based recruitment

rates (compared to dispersal and population growth

rate) as the most parsimonious demographic predictor

of EMA (fire; wi = 1) for the five plant species, explain-

ing ~58% of the structural deviance (Table 4).

Range Margin Movement: Range margins for most of

the Australian plant species under analysis were pre-

dicted to experience large shifts between 2020 and 2100

(Appendix S4), especially those at the northern bound-

ary (Fig. 3, Appendix S5). Although climate scenario

and correlative SDMs influenced the speed and direc-

tion of annual predicted movement of the most north-

ern 10% of the metapopulation (Fig. 3), patch structure

(patch.range + [1|species]; wi = 0.539) had the strongest

influence on northern range margin movement

between 2020 and 2100 (Table 3, Appendix S3). There

was also reasonable support for the next-ranked mod-

els: the null, 1 + [1|species] (wi = 0.15; DAICc = 2.6);

and scenario + [1|species] (wi = 0.13; DAICc = 2.85).

Again, the random effect accounted for the largest pro-

portion of the deviance explained (~11% compared to

14% for the AICc best model).

Unlike expected minimum abundance, there was lit-

tle support that fire tolerance influenced northern range

margin movement (i.e., unable to detect the influence of

fire tolerance on extinction risk). Instead, modeling

northern range movement as a function of dispersal

had the strongest AICc support (dispersal; wi = 0.44;

Table 4). Although there was similar support for a

more parameter rich model, with dispersal and its

interaction with patch structure (patch.range:disersal;

wi = 0.40; DAICc = 0.21), the single parameter dispersal

Table 2 Summary set of general linear models for predicted

range area in 2100 (dependent variable) according to habitat-

only models and models with both population and habitat

dynamics

Model k LL DAICc wAICc %DE

approach + coupling 3 �4.13 0 0.38 66.4

approach 2 �5.47 0.38 0.31 55.6

approach + scenario 3 �5.31 2.36 0.12 56.9

coupling 2 �11.25 11.94 0 8.6

scenario 2 �12.18 13.80 0 1.0

Number of parameters (k), log likelihood (LL), change in AICc

compared to the best-ranked model (DAICc), AICc model

weights (wAICc), and the percentage of explained deviance (%

DE) for the response variable, range area in 2100 proportional

tomaximum range area per species. Range area is based on hab-

itat suitability for habitat only models and occupied range area

for models that couple population dynamics and habitat (see

Methods for further details). Fixed effects (predictors) include

climate scenario (scenario), modeling technique [i.e., uncoupled

species distribution model (SDM) or coupled niche-population

model model; coupling] and SDM approach (approach). See

Appendix 2 for the complete general linearmodel set.

Table 3 Summary set of general linear mixed effects models for expected minimum abundance (EMA) and movement of the

northern range margin (Margin) as the dependent variables

Response Model k LL DAICc wAIC %DE

EMA patch.structure+(1|species) 4 �34.08 0.00 0.96 72.9

1+(1|species) 3 �39.27 7.96 0.02 68.8

scenario+(1|species) 5 �38.96 12.30 0.00 69.0

approach+(1|species) 5 �40.20 14.77 0.00 68.0

Margin patch.structure+(1|species) 4 �73.99 0.00 0.54 13.5

1+(1|species) 3 �76.48 2.56 0.15 10.6

scenario+(1|species) 5 �74.15 2.85 0.13 13.3

approach+(1|species) 5 �76.01 6.58 0.02 11.1

Number of parameters (k), log likelihood (LL), change in AICc compared to the best-ranked model (DAICc), model weights (wAICc)

and percentage explained deviance (%DE), for two separate general linear mixed effects model sets. The response (or dependent)

variables for these different model sets were: (i) expected minimum abundance in 2100 (EMA); and (ii) movement of the northern

most 10% of the population between 2020 and 2100 relative to maximum movement recorded across species and scenarios (Margin).

Fixed effects (predictors) included: future climate scenario (scenario), species distribution modeling approach (approach) and the ratio

between predicted number of patches and range size in 2020 (patch.structure). Species was treated as a random effect. See Appendix

3 for the complete general linear mixed effects model set.
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model explained the majority of structural deviance

(33% vs 40% for the more parameterized model).

Area and population size

Relative change in summed habitat suitability tended

to track occupied range area across species and climate

scenarios (Fig. 4; Appendix S6). However, the relation-

ship between relative change in population size and

measures of range area differed between species and

scenarios of habitat change (the result of emission sce-

nario and correlative SDM approach). In some cases,

populations declined more or less linearly with total

habitat suitability and occupied range area (Fig. 4).

However, for the majority of species and scenarios, the

relationship was strongly non-linear (Fig. 4; Appendix

S6). In fact, in some cases population size actually

increased despite a persistent decline in total habitat

suitability and occupied range area (Fig. 4), most likely

caused by an increase in density in highly suitable areas

due to non-equilibrium density dependence.

Discussion

For five species of Australian plants with contrasting

demographic traits, our results demonstrate that the

relationship between relative change in range area and

population abundance is rarely linear and sometimes

inverse, differing between species and amongst scenar-

ios of projections of habitat change within a species.

Our simulations reveal that direct measures of climate-

induced extinction risk and demographic-based range-

margin movement are strongly affected by key

demographic traits, but not variation between temporal

patterns of spatial habitat suitability (which can result

from different correlative SDM approaches). Moreover,

commonly used proxies of climate-driven extinction

risk (e.g., measured change in range area) were found

to be most sensitive to the habitat suitability model.

These results underscore the need to consider direct

measures of extinction risk (population viability), as

well as measures of change in habitat area, when

assessing climate change impacts on biodiversity. Our

results, therefore, provide additional support for using

sophisticated methods, where data permit, that couple

spatial environmental variability with population

dynamics: a technique that has gained support on theo-

retical grounds (Huntley et al., 2010).

Methods used to predict species distributions affect

predictions both for baseline conditions (Elith et al.,

2006), and for forecasting changes under climate

change (Araújo & Rahbek, 2006; Elith et al., 2010). The

Table 4 Relative influence of spatial structure and key population traits on expected minimum abundance and movement of the

northern range margin

Response Model k LL DAICc wAICc %DE

EMA fire 2 �50.24 0.00 1 57.6

rmax 3 �61.11 24.15 0 31.3

dispersal 2 �64.66 28.84 0 19.6

patch.structure+dispersal 3 �64.53 30.99 0 20.0

patch.structure:dispersal 4 �64.53 33.52 0 20.1

null 1 �69.56 36.34 0 0.0

patch.structure 2 �69.37 38.25 0 0.9

Margin dispersal 2 �76.40 0.00 0.44 33.4

patch.structure:dispersal 4 �74.03 0.21 0.40 40.0

patch.structure+dispersal 3 �76.25 2.11 0.15 33.8

fire 2 �82.34 11.88 0 13.3

patch.structure 2 �84.15 15.50 0 6.0

null 1 �85.54 15.98 0 0.0

rmax 3 �85.24 20.10 0 1.3

Number of parameters (k), log likelihood (LL), change in AICc compared to the best-ranked model (DAICc), model weights (wAICc)

and percentage explained deviance (%DE) for two separate general linear model sets. The response (or dependent) variables for

these different model sets were: (i) expected minimum abundance in 2100 (EMA); and (ii) movement of the northern most 10% of

the population between 2020 and 2100 relative to maximum movement recorded across species and scenarios (Margin). Predictor

variables included: maximum rate of population growth (rmax; low, medium or high); average dispersal distance for one in every

1000 individuals (disp); recruitment response to fire (strong or weak); and the ratio between the predicted number of patches and

range size in 2020 (patch.range). The null model (null) assumes a single rate across species, scenario and method. See Methods for

further details.
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latter typically culminates in considerable model dis-

agreement (Pearson et al., 2006). In this study, we have

shown that the approach used for fitting SDMs strongly

influences projected changes in range area and spatial

patterns of abundance in the coupled niche-population

model. That is, the area and spatial pattern of suitable

and occupied habitat, according to coupled and uncou-

pled models respectively, was quite similar for a given

SDM technique. This important observation indicates

that the effect of the SDM carries through to the cou-

pled model. Thus, SDM model uncertainty must be

considered in any management decision that uses occu-

pied range area to evaluate extinction proneness. For

example, quantifying variance components can be used

to evaluate variability in SDM-based recommendations

for conservation practitioners (Mbogga et al., 2010).

Factors that regulate a species’ geographic extent

and spatial abundance, operating singly or in combina-

tion, ultimately influence vital rates (survival and

reproduction) and associated population traits (Gaston,

2003). Range margins occur where individual popula-

tions are no longer sustained by local recruitment or

dispersal from adjacent areas, because local deaths

exceed local births and immigrations (Caughley et al.,

1988). Thus, it is interesting that our occupied range

area estimates for five plant species tended not to be

heavily affected by the explicit modeling of population

dynamics. Yet, in line with our hypothesis, key life-his-

tory traits and, to a lesser degree, landscape spatial

structure, had a strong influence on expected minimum

abundance (a direct measure of extinction risk) and on

a metric of range margin movement. Fire tolerance had

the largest influence on expected minimum abundance,

while long-distance dispersal rate and its interaction

with the spatial configuration of the landscape in 2020,

had the strongest effect on northern range margin

movement.

Projected abundance did not typically respond line-

arly to changes in summed habitat suitability and geo-

graphic extent for the five plant species, which is to be

expected since population persistence was sensitive to

different drivers of variation than habitat area. How-

ever, this observation has important ramifications for

the use of habitat-area-change metrics as proxies for

extinction risk. The key issue is that inferring extinction

risk from projected changes in geographic extent is con-

strained by an underlying assumption of a linear rela-

tionship between abundance and range area. Although

this relationship is usually positive, the relationship

may have multiple forms (Blackburn et al., 2006), mean-

ing that it is unlikely that species’ abundance will

decline at the same rate as its range area (Lawton,

1993). This assumption is especially problematic in the

context of climate change because several additional

factors are likely to exacerbate the climatic effects on

species persistence beyond the effects predicted by

changes in available habitat area (Botkin et al., 2007).

Although the relationship between the relative

change in summed habitat suitability, range area and

population size differed between species and across

scenarios of habitat change within species, the relation-

ships revealed in our simulations were rarely linear

(Fig. 4). For example, the population density of S. mac-

rocarpus increased heavily between 2020 and 2100,

while habitat suitability and occupied range area only

changed marginally, causing average cell density to

increase. In the case of H. constablei, population density

remained high (in some cases increasing) despite a

Fig. 3 Range movement in the most northern 10 per cent of the

metapopulation for Angophora hispida, Banksia baxteri, Hakea con-

stablei, Senecio macrocarpus and Xanthorrhoea resinosa between

2020 and 2100, according to three different species distribution

modeling approaches [Bio-ensembles, MaxEnt, MaxEnt (with

substrate)] and two climate change scenarios (LEV1; WRE750).

See Methods for details.
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gradual decrease in habitat suitability and range area.

We suspect that these nonlinearities are caused by a

combination of weak density dependence (which

results in weak coupling of habitat change and popula-

tion dynamics; see below) and highly variable popula-

tion dynamics driven by complex interactions between

Fig. 4 Change in summed habitat suitability, occupied range area and population size between 2020 and 2100 for Angophora hispida

(A), Banksia baxteri (B), Hakea constablei (C), Senecio macrocarpus (D) and Xanthorrhoea resinosa (E) according to three different species dis-

tribution modeling approaches [Bio-ensembles, MaxEnt with and without non-climate parameters (substrate)] and a high CO2 concen-

tration stabilising scenario (WRE750)
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fire and demography. For A. hispida, the relationship

between habitat area and population size differed

between climate scenario as well as SDM approach,

highlighting further the importance of suitable habitat

structure and area, as well as demographic traits, in

defining the connection between abundance and range

area.

Our application of the coupled niche-population

modeling approach simulated the effects of climate

change only through its impact on the species’ habitat.

For species with a strong linkage between habitat and

vital rates (i.e., for species with moderate to strong den-

sity dependence) the effect on habitat translates to

effects on vital rates, so there is an indirect effect of cli-

mate change on vital rates. In principle, direct effects of

climate change on vital rates can also be incorporated

in this framework. For instance, Keith et al. (2008) used

the same linked habitat-demographic approach to

incorporate direct effects of climate change on plant

fecundity through changes in fire regimes. However, in

our application, data were not available on the relation-

ship between fire and fecundity for all species. One

result is that for species with weak density-dependence,

the linkage between habitat and demography is weak

and thus, the effects of climate change are likely to be

underestimated. This is probably one of the reasons

why, for H. constablei and S. macrocarpus, habitat and

viability change in opposite directions. This observation

demonstrates that in order to correctly assess the effects

of climate change within this framework, the effects of

climate on demography (either direct or indirect) must

be fully accounted for.

To overcome problems with inferring population

decline from projected changes in habitat suitability

derived from correlative SDMs, the IUCN has sug-

gested using a minimum habitat suitability threshold to

exclude areas unlikely to be suitable and removing

fragments that are too small and isolated to support

viable populations (IUCN, 2010a). Although, such mea-

sures may be appropriate in instances where deteriorat-

ing suitability and range area is associated with a

decline in population size, they will do little to

strengthen confidence in range-area type proxies of

extinction risk if population abundance is expected to

increase despite a contraction in range area; or where

the rate of change in abundance strongly outpaces

changes in total habitat suitability. Nonlinearities such

as these were observed among the five Australian plant

species, making declines in habitat area crude and

sometimes misleading proxies of extinction risk. Thus,

results from distribution and demographic modeling

techniques, which assume that extinction risk is inver-

sely related to range or habitat patch area (e.g., Wilson

et al., 2010), should be interpreted cautiously.

Our research on Australian plants strengthens the

argument for continuing to develop and link correlative

SDMs with metapopulation models because habitat-

demographic approaches provide direct measures of

extinction risk, in addition to range area type proxies

of extinction threat. In doing so, they will be able to

offer more appropriate conservation measures to offset

climate change impacts. However, these techniques are

data intensive, requiring a strong understanding of the

population dynamics of the focal species (as well as

distributional data), so they will not be possible for the

majority of the world’s species.

A potential solution is to use these more sophisti-

cated methods selectively, through a targeted approach

aimed at developing general guidelines that better

describe traits and conditions that make some species

more vulnerable to climate change than others (Akça-

kaya et al., 2006; Brook et al., 2009). Building spatially

explicit population models with dynamic landscape

structure for a wide range of ‘exemplar taxa’ with con-

trasting life histories (such as dispersal ability, genera-

tion time, rate of population growth) will enable (i) a

more appropriate weighting of climate-change impacts

against other drivers of biodiversity loss, and (ii) a

quantitative determination of how climate change will

act synergistically with existing threats such as land

use change and habitat fragmentation. Sensitivity anal-

yses should be an important component of such com-

parative work, as it will help in establishing the life-

history characteristics under which the effects of cli-

mate change on species viability are exacerbated

beyond the effects predicted by change in available

habitat area.
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